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We present a pair density �PD� functional scheme utilizing the noninteracting reference system. In order to
check to what extent this scheme can express the correlation effects, actual calculations are performed for the
neutral neon atom. It is shown that this scheme reproduces about 20% of the correlation energy through use of
noninteracting single determinants with an approximate correlating kinetic energy functional. Thus, since it
obviously provides the N-representable and correlated PD, this scheme can be positioned as an effective initial
theory in the field of the PD functional theory, just like the position of the Hartree-Fock approximation in the
field of the wave function theory.
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I. INTRODUCTION

In recent years, we have proposed the extended
constrained-search �ECS� theory in which arbitrary physical
quantities can be chosen as basic variables.1–5 The ECS
theory has a strong merit to reproduce, in principle rigor-
ously, the physical quantities that characterize the ground-
state properties of the intended system. The validity of the
ECS theory has been confirmed by revisiting the previous
theories such as the spin density-functional theory, current
density-functional theory, local density approximation plus
Hubbard U �LDA+U� method, etc.1–5

As the next step toward developing the effective theory,
the choice of basic variables of the ECS theory is our matter
of interest. As a candidate, we can immediately hit on the
pair density �PD� that corresponds to the diagonal element of
the spinless second-order reduced density matrix. The PD
includes more information than the electron density, or to be
more precise, the expectation value of the arbitrary two-
particle operator can be expressed rigorously by using the
PD.6,7 Therefore, this type of the ECS theory is expected to
provide a more detailed description for the electron correla-
tion. Along this line, we have recently proposed a PD func-
tional theory utilizing the noninteracting reference system.8

Although it is a preliminary work, we have confirmed that
the resultant single-particle equation is analogous to the
Hartree-Fock �HF� equation but contains the correlation
terms definitely.8

Of course, due to the above-mentioned merit of the PD, a
lot of works concerning the PD functional theory have been
done.8–24 They are expected to provide a possible way to go
beyond the conventional density-functional theory,25,26 and
have gotten a lot of attention recently. The PD functional
theory is yet a developing field. We can say that our scheme8

is one of these developing PD functional theories.
In this paper, we shall evaluate the validity of this scheme

from the quantitative point of view by performing actual
calculations for the neutral neon atom. The results show that
this scheme can be positioned as an effective initial theory in

the field of the PD functional theory because it obviously
provides the N-representable and correlated PD, and because
there hardly exists the computational PD functional scheme
so far. This position is just analogous to that of the HF ap-
proximation among many kinds of wave function
theories.27,28 The details will be discussed in the following
sections.

Organization of this paper is as follows. In Sec. II, we
present the outline of the PD functional theory utilizing the
noninteracting reference system. In Sec. III, features of this
scheme are discussed from the formal viewpoint. Several
formal merits are listed. In order to give a direct proof of the
validity of the present scheme, we perform the test calcula-
tions for the neutral neon atom in Sec. IV. The results are
quite interesting and show that the present scheme is poten-
tially an effective starting point of the PD functional theory.
This positioning will be discussed in detail in Sec. V. Finally,
some concluding remarks are given in Sec. VI.

II. PD FUNCTIONAL THEORY USING THE
NONINTERACTING REFERENCE SYSTEM

First of all, let us review our PD functional theory8 for
later convenience. Our scheme is based on the ECS
theory.1–5 We shall consider a system, the Hamiltonian of
which is given by

Ĥ = T̂ + Ŵ +� �̂�r�vext�r�dr , �1�

where T̂, Ŵ, and �̂�r� are operators of the kinetic energy,
electron-electron interaction, and electron density, respec-
tively, and where vext�r� stands for the external potential. The
PD is defined as

��2��rr�;rr�� =
1

2
���� � �̂†�r,���̂†�r�,����̂�r�,����̂�r,��

�d�d����� , �2�

where �̂�r ,�� and �̂†�r ,�� are field operators of electrons,
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and r and � are spatial and spin coordinates, respectively,
and � is the antisymmetric wave function. The universal
functional that is independent of the external potential is
given by

F���2�� = Min
�→��2�

���T̂ + Ŵ���

= T���2�� + e2� � ��2��rr�;rr��
�r − r��

drdr� �3�

with

T���2�� = Min
�→��2�

���T̂��� , �4�

where �→��2� denotes the searching over all antisymmetric
wave functions that yield a prescribed ��2��rr� ;rr��, and
T���2�� is the kinetic energy functional. Using this universal
functional, the Hohenberg-Kohn theorem can be proven in
the extended form.1,8,9,15 The variational principle of this
theorem is given by

E0 = Min
��2�

Evext
���2�� �5�

with

Evext
���2�� = F���2�� +

2

N − 1
� � ��2��rr�;rr��vext�r�drdr�,

�6�

where E0 denotes the ground-state energy. In order to per-
form this variational principle, we need to define the search
region within the N-representable PDs. However, the neces-
sary and sufficient conditions for the N-representable PD
have not yet been given in a practical form.6,7,29–45 Our strat-
egy is to restrict the search region within the set of PDs that
are constructed from the single Slater determinants �SSDs�.
It prevents the solution from being unphysical, in other

words, it guarantees the solution to be necessarily
N-representable. This is one of the strong merits of the
present scheme. But in the meanwhile, there exists a problem
such that the solution may be far from the correct ground-
state PD. This is because the search region of the present
scheme is smaller than the set of whole N-representable PDs.
This problem is, of course, related to the necessary and suf-
ficient conditions for the N-representable PD, which will be
discussed in Sec. V in relation to the positioning of the
present scheme.

According to the strategy mentioned above, we introduce
the noninteracting reference system so as to reproduce the
PD. The kinetic energy functional of the reference system is
defined as

Ts���2�� = Min
�→��2�

���T̂��� , �7�

where � is the SSD. Using Ts���2��, we shall give F���2�� as
the following form:

F���2�� = Ts���2�� + �Tc���2�� + e2� � ��2��rr�;rr��
�r − r��

drdr�,

�8�

where �Tc���2�� is the correlating kinetic energy that is de-
fined by

�Tc���2�� = T���2�� − Ts���2�� . �9�

Substituting Eq. �8� into Eq. �6�, we get

Evext
���2�� = Ts���2�� + �Tc���2�� + e2� � ��2��rr�;rr��

�r − r��
drdr�

+
2

N − 1
� � ��2��rr�;rr��vext�r�drdr�. �10�

The variational principle yields the following single-particle
equation:

	−
	2�2

2m
+ vext�r�

��r,��

+� � dr�d��	 e2

�r − r��
+

1

2

��Tc���2��
���2��rr�;rr��

+
1

2

��Tc���2��
���2��r�r;r�r�


�	�




��r�,���
�r�,���
��r,�� − �





��r�,���
��r�,���
�r,��
 = ��
��r,�� , �11�

where 
��r ,�� are the constituent orbitals of the SSD. The explicit form of the PD reproduced in the reference system is given
by

��2��rr�;rr�� =
1

2�
�,
� � �
�

� �r,��

��r�,���
��r,��
�r�,��� − 
�

� �r,��

��r�,���
�r,��
��r�,���d�d��. �12�
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In order to solve the single-particle equation �Eq. �11��, the
approximate form of �Tc���2�� is absolutely necessary. Uti-
lizing the scaling properties of the kinetic energy
functionals,8,13 we develop an approximate form

�Tc���2�� = K� � drdr�
��2��rr�;rr��7/6

�r − r��
, �13�

where K is the arbitrary constant. Note that an approximate
form for T���2�� that is analogous to Eq. �13� appears in Ref.
13. The derivation of Eq. �13� is shown in Appendix A. The
PD can be obtained by solving Eqs. �11�–�13� in a self-
consistent way.

III. FORMAL FEATURES OF THE PRESENT SCHEME

We can confirm the merits of the present scheme even
within a formal discussion. Before quantitative evaluation of
the present scheme, let us list the merits of the present
scheme from a formal viewpoint.

In the PD functional theory, there exist two well-known
problems,8 i.e., �i� N-representability of the PD, and �ii� ap-
proximate form of the kinetic energy functional. The first one
is due to the fact that the necessary and sufficient conditions
for the N-representable PD are not yet known in a practical
form, and the second one is that the kinetic energy cannot
exactly be written by using the PD alone. As shown above,
the present scheme is obviously free from the
N-representability problem and makes significant progress
concerning the second problem. That is to say,

�a� The PD is guaranteed to be necessarily
N-representable by constructing the PD from the SSD.

�b� An approximate form of the kinetic energy functional
can be easily derived by utilizing the scaling properties of
the kinetic energy functionals. This is also due to the intro-
duction of the noninteracting reference system.

In addition to these merits, we can point out the other
features as follows:

�c� As can be seen in Eq. �11�, the single-particle equation
is similar to the HF equation but definitely contains the cor-
relation terms. Namely, the fourth and fifth terms of the left-
hand side are the additional terms to the HF equation.

�d� The total energy of this scheme is shown to be lower
than that of the HF equation. This means that the present
scheme includes the correlation effects definitely. The proof
is given in Appendix B.

�e� The present scheme is consistent with the fact that
correlation effects have a tendency to raise the kinetic energy
as compared to the HF kinetic energy.46 This can be under-
stood as follows: According to the virial theorem, correlation
effects raise the kinetic energy, which means that T���2��

�THF, where THF is the HF kinetic energy. On the other
hand, the inequality �Tc���2���=T���2��−Ts���2����0 exactly
holds.8 Therefore, we can conclude Ts���2���T���2���THF.
The resultant inequality Ts���2���THF is consistent with the
fact that the kinetic energy increases beyond the HF kinetic
energy due to correlation effects.

Thus, it is formally shown that the present scheme pro-
vides the N-representable and correlated PD. However, as
already mentioned, there exists a remaining problem that the
search region is smaller than the set of all of N-representable
PDs. Although the correlation terms are included in the
single-particle equation formally, it is difficult to judge to
what extent the correlation effects can be covered by the
present scheme. The direct and best way to answer this ques-
tion is to perform actual calculations. The formal merits
mentioned above become substantial only after checking the
validity of the present scheme quantitatively.

IV. TEST CALCULATIONS OF THE PRESENT SCHEME

We shall perform the actual calculations for neutral neon
atom so as to check the performance of the present scheme
quantitatively. In actual calculations, how to determine the
value of K in Eq. �13� is an important issue because the
magnitude of correlation effects directly depends on it. In the
present calculations, it is determined by requiring the elec-
tron density to fit the result of the configuration interaction
�CI� calculation. This determination method is reasonable be-
cause the search region of the present scheme necessarily
includes the set of PDs that yield the correct electron density.
This can be understood if we note that all of N-representable
electron densities, the set of which is identical with that of
SSD-representable electron densities,47 can be obtained by
integrating SSD-representable PDs. The value of K used here
will be shown later, together with calculation results.

In the present calculations, the spherical �central-field� ap-
proximation is adopted to solve the single-particle equation
�Eq. �11��. This approximation is conventionally applied to
atomic structure calculations using the HF equation or Kohn-
Sham equation, or other single-particle equation.48 In what
follows, we will rewrite Eq. �11� on the basis of the spherical
approximation.49–54

A central-field wave function is of the form


��x� =
Pnl�r�

r
Ylm�r̂������ , �14�

where Pnl�r�, Ylm�r̂�, and ����� denote the radial wave func-
tion multiplied by r, spherical harmonics and spin function,
respectively. Substituting Eqs. �13� and �14� into Eq. �11�,
and acting with the operator �m=−l

l ���dr̂�d�Ylm
� �r̂���

���� on
both sides of Eq. �11�, we have

	−
	2

2m

d2

dr2 +
	2l�l + 1�

2mr2 +
Ze2

r
+ e2�

n�l�

occ.

Nn�l�� 1

r�

�Pn�l��r���
2dr� − �nl
Pnl�r� = − Fnl�r� �15�

with
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Fnl�r� = −
e2

2 �
n�l�

occ.

�
�=�l−l��

l+l�

Nn�l�� l l� �

0 0 0
�2

Pn�l��r��
0

� r�
�

r�
�+1 Pn�l�

� �r��Pnl�r��dr� +
7K

21/6 · 6
�1�r��0�r�1/6Pnl�r�

−
7K

21/6 · 12 �
n�l�

occ.

�
�=�l−l��

l+l�

Nn�l�� l l� �

0 0 0
�2

�nl,n�l�,�
2 �r��0�r�1/6Pn�l��r�

−
7K

21/6 · 72 �
n1l1

occ.

�
n2l2

occ.

�
L=�l1−l2�

l1+l2

Nn1l1
Nn2l2�l1 l2 L

0 0 0
�2

�n1l1,n2l2,L
2 �r�

�0�r�−5/6

4�r2 Pn1l1
� �r�Pn2l2

�r�Pnl�r�

+
7K

21/6 · 144 �
n�l�

occ.

�
n1l1

occ.

�
n2l2

occ.

�
L=�l1−l2�

l1+l2

�
�=�l−l��

l+l�

�
L�=�L−��

L+�

Nn1l1
Nn2l2

Nn�l��l1 l2 L

0 0 0
�2� l l� �

0 0 0
�2�L � L�

0 0 0
�2

��2L + 1��2� + 1��nl,n1l1,n2l2,n�l�,L�
3 �r�

�0�r�−5/6

4�r2 Pn1l1
� �r�Pn2l2

�r�Pn�l��r� , �16�

where

�1�r� = �
0

� 4�r�2

r�

�0�r��7/6dr�, �17�

�n1l1,n2l2,L
2 �r� = �

0

� r�
L

r�
L+1�0�r��1/6Pn2l2

� �r��Pn1l1
�r��dr�,

�18�

�nl,n1l1,n2l2,n�l�,L�
3 �r� = �

0

� r�
L�

r�
L�+1

�0�r��−5/6

4�r�2 Pn2l2
� �r��Pn�l�

� �r��

�Pn1l1
�r��Pnl�r��dr�. �19�

Here, Nnl denotes the occupation number of the nl-shell, and
takes on integer values between 0 and 2l�l+1�. The bracket
� l

0
l�
0

�
0 � stands for the Wigner 3j symbol, Z is the atomic num-

ber, and �0�r� denotes the ground-state electron density. In

the above derivation, ��2��rr� ;rr��p is approximately calcu-
lated by the following formula:

��2��rr�;rr��p = �a�r,r�� + b�r,r��p

� a�r,r��p + pa�r,r��p−1b�r,r�� , �20�

where a�r ,r�� and b�r ,r�� correspond to the first and second
terms of Eq. �12�, respectively, and p is a positive number.
This approximation is reasonable because the second term is
expected to be smaller than the first one.

Equation �15� is the radial differential equation that
should be solved in a self-consistent way. The fourth term in
the left-hand side of Eq. �15� is the classical Coulomb poten-
tial, and the first term in the right-hand side of Eq. �16� is the
Fock potential �exchange potential�. Of course, these two
terms have the same form as the corresponding potentials in
the HF equation.48 The last four terms in right-hand side of
Eq. �16� correspond to the correlation potentials that newly
appear in the present scheme.

As for the total energy, applying the spherical approxima-
tion, we have

Etotal = − �
nl

occ.

Nnl� Fnl�r�Pnl
� �r�dr −

e2

2 �
n�l�

occ.

Nn�l�� � 4�r2�Pn�l��r���
2

r�

�0�r�dr�dr + �
nl

occ.

Nnl�nl −
1

4 �
nl

occ.

�
n�l�

occ.

�
�=�l−l��

l+l�

NnlNn�l�

�� l l� �

0 0 0
�2

Inl,n�l�
� +

K

27/6� 4�r2�0�r�7/6�1�r�dr −
K

27/6 · 12�
nl

occ.

�
n�l�

occ.

�
�=�l−l��

l+l�

NnlNn�l�� l l� �

0 0 0
�2

�� �0�r�1/6Pnl
� �r�Pn�l��r��nl,n�l�,�

2 �r�dr �21�

MASAHIKO HIGUCHI AND KATSUHIKO HIGUCHI PHYSICAL REVIEW B 78, 125101 �2008�

125101-4



with

Inl,n�l�
� =� � Pnl

� �r�Pn�l�
� �r��

r�
�

r�
�+1 Pn�l��r�Pnl�r��drdr�.

�22�

Here we have used the approximate formula Eq. �20� in cal-
culating �Tc���2��.

Equation �15� is solved numerically for neutral neon atom
by using the standard Green’s function technique. The con-
vergence is checked by using both the electron density and
the total energy �Eq. �21��. Additional terms �i.e., correlation
potentials� are not complicated, so that computation time is
comparable to that of HF equation. This is also a strong merit
of the present scheme.

We now turn to numerical results. First, the atomic struc-
ture calculations are performed with various values of K so
as to search the best one by means of the least square
method. Figure 1 shows the profile of the electron density
that is calculated with K=−1.6�10−3, together with the cor-
responding profile calculated by the CI method.55 The best
agreement is achieved at K=−1.6�10−3 with the root-mean-
square error of 0.04. This negative value is consistent with
the fact that �Tc���2�� should be negative �see the feature �e�
in Sec. III�. The calculation results using K=−1.6�10−3 are
summarized in Table I. The total energy of the present
scheme is reasonably lower than that of the HF approxima-
tion �−257.094 Ry.� �Ref. 56� and higher than that of the CI
method �−257.856 Ry.�.57 Also, the present scheme can
cover about 20% of the electron correlation from the view-
point of the correlation energy. These are not negligibly

small, and are the direct answers to the question: “To what
extent can the correlation effects be covered by the present
scheme?”

V. POSITION OF THE PRESENT SCHEME

On the basis of results and discussions thus shown, we
shall clarify the position of the present scheme in the field of
the PD functional theory. First, let us consider the position of
the HF approximation among the wave function theories. As
is well known, the HF approximation gives the best approxi-
mation of the ground state within the set of the SSDs. In
other words, the best solution is searched within the re-
stricted set of antisymmetric wave functions. Similarly to the
HF approximation, the present scheme gives the best ap-
proximation of the ground-state PD within the restricted set
of N-representable PDs that arise from single determinants.
Thus, the position of the present scheme in the field of the
PD functional theory just corresponds to that of the HF ap-
proximation in the field of the wave function theory.

There is no doubt that the HF approximation is an effec-
tive initial scheme in the field of the wave function theory. A
variety of the wave function theories have been developed on
the basis of the HF approximation.27,28 Likewise, it is ex-
pected that the present scheme would give an appropriate
starting point of the PD functional theory. This expectation
has, actually and definitely, been verified by the present test
calculations. Namely, we have confirmed that the present
scheme obviously provides the N-representable and corre-
lated PD, and can cover the correlation effects by about 20%
quantitatively. It can therefore be said that the present
scheme is positioned as an effective initial one in the field of
the PD functional theory.

VI. CONCLUDING REMARKS

We present the PD functional theory utilizing the nonin-
teracting reference system, and show by the numerical cal-
culations that it obviously provides the N-representable and
correlated PD. It is also shown that the position of the
present scheme in the field of the PD functional theory just
corresponds to that of the HF approximation in the field of
the wave function theory. In other words, the present scheme
can be positioned as an effective initial scheme in the field of
the PD functional theory. This is quite important because the
development of the PD functional theory utilizing this initial
theory as a starting point will be anticipated, as the wave
function theory has been developed on the basis of the HF
approximation so far.

4
π
r
2
ρ
0
(r
)
(a
.u
.)

r (a.u.)

0

12

10

8

6

4

2

0.001 0.01 0.1 1 10 100

Present

CI method

FIG. 1. Profiles of the electron density calculated by the present
scheme �open circles� and the CI method �crosses� �Ref. 55� in
atomic unit �a.u.�. The value of K is set to −1.6�10−3 in the present
calculation.

TABLE I. Atomic structure calculations for neutral neon atom.

K RMSEa Total energy �Ry� Correlation energy �Ry�

Present −1.6�10−3 0.04 −257.268 −0.174

HF 0.0 0.24 −257.094

CI method −257.856 b −0.762 b

aRoot-mean-square error for the electron density.
bReference 57.
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Besides the above-mentioned developments based on the
initial scheme, it would be also interesting to combine the
present scheme with the recent works such as those in Refs.
39 and 45. These works are related to the present scheme in
a sense that they are based on the Kohn-Sham “orbital
model” plus a PD correction. For example, one can try one
of the Levy-Ayers functionals39 in conjunction with the
present scheme.

Although the PD functional theory is a very hot area of
the energy-band theory in recent years, there hardly exists
the computational PD functional scheme so far. The present
scheme would be the valid one in the sense that it is compu-
tational and contains the correlation effects definitely.
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APPENDIX A: DERIVATION OF Eq. (13)

In this appendix, the approximate form Eq. �13� is derived
by using the scaling relation of �Tc���2��. The derivation
procedure is similar to that of the alternative approximate
form that has been presented in the previous paper.8 Let us
start with the scaling relation of �Tc���2��. We have8,13

�Tc���
�2�� = �2�Tc���2�� . �A1�

Here ��
�2��rr� ;rr�� stands for the PD that is calculated by the

scaled wave function, which is given by

��
�2��rr�;rr�� = �6��2���r�r�;�r�r�� . �A2�

Acting with lim�→1
�
�� on both sides of Eq. �A1�, and utilizing

the integration by parts, we obtain

2�Tc���2�� = −� � ��2��rr�;rr��

�r · �	 ��Tc���2��
���2��rr�;rr��
drdr�

−� � ��2��rr�;rr��r · �	 ��Tc���2��
���2��r�r;r�r�
 .

�A3�

In the same way as in the previous paper,8 this equation is
utilized as a sum rule for �Tc���2��. With reference to the
approximate form of T���2�� that is proposed by Levy and
Ziesche,13 we assume the following form for �Tc���2��:

�Tc���2�� =� � �tc���2�����2�=��2��rr�;rr��

�r − r��
drdr�, �A4�

where �tc���2�� is a function of ��2�. Substitution of Eq. �A4�
into Eq. �A3� leads to

� � 1

�r − r��	6��2���tc���2��
���2�

− 7��2��tc���2��

��2�=��2��rr�;rr��

drdr� = 0, �A5�

where we have neglected the surface integral at infinity. As
the necessary condition, we obtain the differential equation
with respect to �tc���2��:

6��2���tc���2��
���2� − 7�tc���2�� = 0. �A6�

Solving the differential equation �Eq. �A6��, and substituting
the solution into Eq. �A4�, we arrive at Eq. �13�. Note that
Eq. �13� just corresponds to the solution that arises if
�tc���2�� is restricted to be ��2� raised to a power.13

APPENDIX B: PROOF FOR FEATURE (d)

The total energy functional of the ECS theory is given by8

Evext
���2�� = F���2�� +

2

N − 1
� � ��2��rr�;rr��vext�r�drdr�.

�B1�

We consider the minimization of Evext
���2�� within the set of

the SSD-representable PDs. For later convenience, this set is
denoted as C�. Using Eqs. �3� and �B1�, the minimization is
rewritten as

Min
��2��C�

Evext
���2�� = Min

��2��C�
	F���2��

+
2

N − 1
� � ��2��rr�;rr��vext�r�drdr�


= Min
��2��C�

� Min
�→��2�

���H���

= Min
��C��

���H��� . �B2�

Here, C�� denotes the set of wave functions that yield the
PDs belonging to C�. C�� , of course, contains not only all
SSDs but also other type of wave functions such as
�eif�r1,r2,¯,rN�, where � and f�r1 ,r2 , . . . ,rN� are the SSD and
arbitrary function that is real and symmetric, respectively.
Taking into account this fact, we have

Min
��C��

���H��� � Min
�

���H��� . �B3�

The right-hand side of this inequality is just the ground-state
energy of the HF equation. Therefore, total energy of the
present scheme is lower than that of the HF equation.
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